

Final Program

The 2023 Nineteenth International Conference on Intelligent Computing

August 10-13, 2023
Zhengzhou, China

The 2023 Nineteenth International Conference on Intelligent Computing

FINAL PROGRAM

August 10-13, 2023
Zhengzhou, China

Outlines

Welcome Message 3
ICIC2023 Organization 5
Sponsors 22
The Location of Conference Venue 24
General Information 25
Schedule Overview 27
Introduction of Plenary Speakers 28
Parallel Sessions for Oral Presentations 36
Detailed Parallel Sessions for Oral Presentations 37

WELCOME MESSAGE FROM GENERAL CHAIRS

The International Conference on Intelligent Computing (ICIC) was started to provide an annual forum dedicated to the emerging and challenging topics in artificial intelligence, machine learning, pattern recognition, bioinformatics, and computational biology. It aims to bring together researchers and practitioners from both academia and industry to share ideas, problems, and solutions related to the multifaceted aspects of intelligent computing.

ICIC 2023, held in Zhengzhou, China, August 10-13, 2023, constituted the 19th International Conference on Intelligent Computing. It built upon the success of ICIC 2022 (Xi'an, China), ICIC 2021 (Shenzhen, China), ICIC 2020 (Bari, Italy), ICIC 2019 (Nanchang, China), ICIC 2018 (Wuhan, China), ICIC 2017 (Liverpool, UK), ICIC 2016 (Lanzhou, China), ICIC 2015 (Fuzhou, China), ICIC 2014 (Taiyuan, China), ICIC 2013 (Nanning, China), ICIC 2012 (Huangshan, China), ICIC 2011 (Zhengzhou, China), ICIC 2010 (Changsha, China), ICIC 2009 (Ulsan, South Korea), ICIC 2008 (Shanghai, China), ICIC 2007 (Qingdao, China), ICIC 2006 (Kunming, China), and ICIC 2005 (Hefei, China).

This year, the conference concentrated mainly on the theories and methodologies as well as the emerging applications of intelligent computing. Its aim was to unify the picture of contemporary intelligent computing techniques as an integral concept that highlights the trends in advanced computational intelligence and bridges theoretical research with applications. Therefore, the theme for this conference was "Advanced Intelligent Computing Technology and Applications". Papers that focused on this theme were solicited, addressing theories, methodologies, and applications in science and technology.

ICIC 2023 received 828 submissions from 14 countries and regions. All papers went through a rigorous peer-review procedure and each paper received at least three review reports. Based on the review reports, the Program Committee finally selected 337 high-quality papers for presentation at ICIC

2023, included in five volumes of proceedings published by Springer: three volumes of Lecture Notes in Computer Science (LNCS), and two volumes of Lecture Notes in Artificial Intelligence (LNAI).

The organizers of ICIC 2023, including Eastern Institute of Technology, and Zhengzhou University of Light Industry, China, made an enormous effort to ensure the success of the conference. We hereby would like to thank the members of the Program Committee and the referees for their collective effort in reviewing and soliciting the papers. In particular, we would like to thank all the authors for contributing their papers. Without the high-quality submissions from the authors, the success of the conference would not have been possible. Finally, we are especially grateful to the International Neural Network Society, and the National Science Foundation of China for their sponsorship.

ICIC 2023 General Chairs
De-Shuang Huang, Shizhong Wei

Organization

General Co-Chairs

De-Shuang Huang, Eastern Institute of Technology, China
Shizhong Wei, Zhengzhou University of Light Industry, China

Program Committee Co-Chairs

Prashan Premaratne, University of Wollongong, Australia
Boyang Qu, Zhong Yuan University of Technology, China
Baohua Jin, Zhengzhou University of Light Industry, China
Kang-Hyun Jo, University of Ulsan, Korea
Abir Hussain, Liverpool John Moores University, UK

Organizing Committee Co-Chairs

Xiao Zhang, Zhengzhou University of Light Industry, China Boyang Qu, Zhongyuan University of Technology, China Kaili Shao, Huanghe S\&T University,China
Yuguo Wu, Zhengzhou Normal University, China

Organizing Committee Members

Fubao Zhu, Zhengzhou University of Light Industry, China
Wei Huang, Zhengzhou University of Light Industry, China
Chenggang Xu, Henan University of Chinese Medicine, China
Tao Wei, Henan University of Engineering, China
Zhijuan Jia, Zhengzhou Normal University, China
Hui Fu, Huanghe S\&T University, China
Wei Liu, Shenzhen Institute of Information Technology, China

Award Committee Co-Chairs

Michal Choras, University of Science and Technology, Poland

Hong-Hee Lee, University of Ulsan, Republic of Korea

Tutorial Co-Chairs

Yoshinori Kuno, Saitama University, Japan
Phalguni Gupta, Indian Institute of Technology Kanpur, India
Huaiguang Wu, Zhengzhou University of Light Industry, China

Publication Co-Chairs

Valeriya Gribova, Far Eastern Branch of Russian Academy of Sciences, Russia
M. Michael Gromiha, Indian Institute of Technology Madras, India

Yin Du, Zhengzhou Normal University, China

Special Session Co-Chairs

Jair Cervantes Canales, Autonomous University of Mexico State, Mexico
Chenxi Huang, Xiamen University, China
Dhiya Al-Jumeily, Liverpool John Moores University, UK
Da Xiao,Huanghe S\&T University,China

Special Issue Co-Chairs

Kyungsook Han, Inha University, Republic of Korea
Laurent Heutte, Université de Rouen, France
Huifang Guo, Huanghe S\&T University, China

International Liaison Co-Chairs

Prashan Premaratne, University of Wollongong, Australia

Workshop Co-Chairs

Yu-Dong Zhang, University of Leicester, UK
Hee-Jun Kang, University of Ulsan, Republic of Korea
Qiuwen Zhang, Zhengzhou University of Light Industry, China

Publicity Co-Chairs

Chun-Hou Zheng, Anhui University, China
Dhiya Al-Jumeily, Liverpool John Moores University, UK
Jair Cervantes Canales, Autonomous University of Mexico State, Mexico
Yuchu He, Zhengzhou Normal University, China

Sponsors \& Exhibits Chair

Fubao Zhu, Zhengzhou University of Light Industry, China

Program Committee Members

Abir Hussain, Liverpool John Moores University, United Kingdom
Antonio Brunetti, Polytechnic University of Bari, Italy
Antonino Staiano, Università di Napoli Parthenope, Italy
Bin Liu, Beijing Institute of Technology, China
Bin Qian, Kunming University of Science and Technology, China
Bin Yang, Zaozhuang University, China
Bing Wang, Anhui University of Technology, China
Binhua Tang, Hohai University, China
Bingqiang Liu, Shandong University, China
Bo Li, Wuhan University of Science and Technology, China
Changqing Shen, Soochow University, China
Chao Song, Harbin medical university, China
Chenxi Huang, Xiamen University, China
Chin-Chih Chang, Chung Hua University, Taiwan, China
Chunhou Zheng, Anhui University, China
Chunmei Liu, Howard University, United States
Chunquan Li, University of South China, China
Dahjing Jwo, National Taiwan Ocean University, Taiwan, China
Dakshina Ranjan Kisku, National Institute of Technology Durgapur, India
Dan Feng, Huazhong University of Science and Technology, China

Daowen Qiu, Sun Yat-sen University, China
Dharmalingam Muthusamy, Bharathiar University, India
Dhiya Al-Jumeily OBE, Liverpool John Moores University, United Kingdom
Dong Wang, university of Jinan, China
Dunwei Gong, China University of MIning and Technology, China
Eros Gian Pasero, Politecnico di Torino, Italy
Evi Sjukur, Monash University, Australia
Fa Zhang, Beijing Institute of Technology, China
Fengfeng Zhou, Jilin University, China
Fei Guo, Central South University, China
Gaoxiang Ouyang, Beijing Normal University, China
Giovanni Dimauro, Department of Computer Science - University o Bari, Italy
Guangwu Hu, Shenzhen Institute of Information Technology, China
Guoliang Li, Huazhong Agricultural University, China
Han Zhang, Nankai University, China
Haibin Liu, Beijing University of Technology, China
Hao Lin, University of Electronic Science and Technology of China, China
Haodi Feng, Shandong University, China
Haodong Zhu, Zhengzhou University of Light Industry, China
Hongjie Wu, Suzhou University of Science and Technology, China
Hongmin Cai, South China University of Technology, China
Hongwei Tao, Zhengzhou University of Light Industry, China
Jair Cervantes, Autonomous University of Mexico state, Mexico
Jiaofen Nan, Zhengzhou University of Light Industry, China
Jian Huang, University of Electronic Science and Technology of China, China
Jian Wang, China University of Petroleum, China
Jiangning Song, Monash University, Australia, Australia
Jiawei Luo, Hunan University, China
Jing Hu, Wuhan University of Science and Technology, China
Jinwen Ma, Peking University, China

Jingyan Wang, Abu Dhabi Department of Community Development, China Jinxing Liu, Qufu Normal University, China

Jirui Li,Henan University of Chinese Medicine, China
Jixiang Du, Huaqiao University, China
Joaquin Torres-Sospedra, Universidade do Minho, Spain
Juan Liu, Wuhan University, China
Jun Zhang, Anhui University, China
Junfeng Xia, Anhui University, China
Jungang Lou, Huzhou University, China
Kachun Wong, City University of Hong Kong, Hong Kong ,China
Kanghyun Jo, University of Ulsan, Republic of Korea
Khalid Aamir, University of Sargodha, Pakistan
Kyungsook Han, Inha University, Republic of Korea
L Gong, Nanjing University of Posts and Telecommunications, China
Laurent Heutie, Université de Rouen Normandie, France
Le Zhang, Sichuan University, China
Lejun Gong, Nanjing University of Posts and Telecommunications, China
Liang Gao, Huazhong Univ. of Sci. \& Tech., China
Lida Zhu, Huazhong Agriculture University, China
Marzio Pennisi, University of Eastern Piedmont, Italy
Michal Choras, University of Science and Technology Bydgoszcz, Poland
Michael Gromiha, Indian Institute of Technology Madras, India
Ming Li, Nanjing University, China
Minzhu Xie, Hunan Normal University, China
Mohd Helmy Abd Wahab, Universiti Tun Hussein Onn Malaysia, Malaysia
Nicola Altini, Department of Electrical and Information Engineering (DEI),
Polytechnic University of Bari, Italy
Peng Chen, Anhui University, China
Pengjiang Qian, Jiangnan University, China
Phalguni Gupta, Vice Chancellor, India

Prashan Premaratne, University of Wollongong, Australia
Pufeng Du, College of Intelligence and Computing, China
Qi Zhao, University of Science and Technology Liaoning, China
Qingfeng Chen, Guangxi University, China
Qinghua Jiang, Harbin Institute of Technology, China
Quan Zou, University of Electronic Science and Technology of China, China
Rui Wang, National University of Defense Technology, China
Saiful Islam, Aligarh Muslim University, India
Seeja K R, Indira Gandhi Delhi Technical University for Women, India
Shanfeng Zhu, Fudan University, China
Shikui Tu, Shanghai Jiao Tong University, China
Shitong Wang, JiangNan University, China
Shixiong Zhang, Xidian University, China
Sungshin Kim, Pusan National University, Republic of Korea
Surya Prakash, IIT Indore, India
Tatsuya Akutsu, Kyoto University, Japan
Tao Zeng, Guangzhou Laboratory, China
Tieshan Li, University of Electronic Science and Technology of China, China
Valeriya Gribova, Institute of Automation and Control Processes, Far Eastern
Branch of Russian Academy of Sciences, Russia
Vincenzo Randazzo, Politecnico di Torino, Italy
Waqas Haider, Kohsar University Murree, Murree, Pakistan
Wen Zhang, Huazhong Agricultural University, China
Wenbin Liu, Guangzhou university, China
Wensheng Chen, Shenzhen University, China
Wei Chen, Chengdu University of Traditional Chinese Medicine, China
Wei Peng, Kunming University of Science and Technology, China
Weichiang Hong, Asia Eastern University of Science and Technology, Taiwan, China
Weidong Chen, Shanghai Jiao Tong University, China

Weiwei Kong, Xi'an University of Posts and Telecommunications, China
Weiwei Zhang, Zhengzhou University of Light Industry, China
Weixiang Liu, Shenzhen University, China
Xiaodi Li, Shandong Normal University, China
Xiaoli Lin, Wuhan University of Science and Technology, China
Xiaofeng Wang, Hefei University, China
Xiaohua Yu, California Polytechnic State University, United States
Xiaoke Ma, Xidian University, China
Xiaolei Zhu, Anhui Agricultural University, China
Xiaoyong Guo, Henan University of Engineering, China
Xiangtao Li, Jilin University, China
Xin Zhang, Jiangnan University, China
Xinguo Lu, Hunan University, China
Xingwei Wang, Northeastern University, China
Xinzheng Xu, China University of Mining and Technology, China
Xiwei Liu, Tongji University, China
Xiyuan Chen, Southeast Univ., China
Xuekun Song, Henan University of Chinese Medicine,China
Xuequn Shang, Northwestern Polytechnical University, China
Xuesong Wang, China University of Mining and Technology, China
Yali Lv,Henan University of Chinese Medicine,China
Yansen Su, Anhui University, China
Yi Xiong, Shanghai Jiao Tong University, China
Yu Xue, Huazhong University of Science and Technology, China
Yizhang Jiang, Jiangnan University, China
Yonggang Lu, Lanzhou University, China
Yongquan Zhou, Guangxi University for Nationalities, China
Yudong Zhang, University of Leicester, United Kingdom
Yunhai Wang, Shandong university, China
Yupei Zhang, Northwestern Polytechnical University, China

Yushan Qiu, Shenzhen University, China
Yunxia Liu, Zhengzhou Normal Unibersity, China
Zhanli Sun, Anhui University, China
Zhenran Jiang, East China Normal University, China
Zhengtao Yu, Kunming University of Science and Technology, China
Zhenyu Xuan, University of Texas at Dallas, United States
Zhihong Guan, Huazhong University of Science and Technology, China
Zhihua Cui, Taiyuan University of Science and Technology, China
Zhiping Liu, Shandong University, China
Zhiqiang Geng, Beijing University of Chemical Technology, China
Zhongqiu Zhao, Hefei University of Technology, China
Zhuhong You, Northwestern Polytechnical University, China

Reviewers

Wan Hussain Wan	Yuqi Wang	Hui Ma
Ishak	Anna Esposito	Lei Deng
Nureize Arbaiy	Salvatore Vitabile	Di Liu
Shingo Mabu	Bahattin Karakaya	María I. Giménez
Lianming Zhang	Tejaswini Mallavarapu	Ansgar Poetsch
Xiao Yu	Sheng Yang	Dimitry Y. Sorokin
Shaohua Li	Heutte Laurent	Jill F. Banfield
Yuntao Wei	Seeja	Can Alkan
Jinglong Wu	Pu-Feng Du	Ji-Xiang Du
Wei-Chiang Hong	Wei Chen	Xiao-Feng Wang
Sungshin Kim	Jonggeun Kim	Zhong-Qiu Zhao
Tianhua Guan	Eun Kyeong Kim	Bo Li
Shutao Mei	Hansoo Lee	Zhong rui Zhang
Yuelin Sun	Yiqiao Cai	Yanyun Qu
Hai-Cheng Yi	Wuritu Yang	Shunlin Wang
Zhan-Heng Chen	Weitao Sun	Jin-Xing Liu
Suwen Zhao	Shou-Tao Xu	Shravan Sukumar
Medha Pandey	Min-You Chen	Long Gao
Mike Dyall-Smith	Yajuan Zhang	Yifei Wu
Xin Hong	Guihua Tao	Qi Yan
Ziyi Chen	Jinzhong Zhang	Tianhua Jiang
Xiwei Tang	Wenjie Yi	Fangping Wan
Khanh Le	Miguel Gomez	Lixiang Hong
Shulin Wang	Lingyun Huang	Sai Zhang
Di Zhang	Chao Chen	Tingzhong Tian
Sijia Zhang	Jiangping He	Qi Zhao
Na Cheng	Jin Ma	Leyi Wei
Menglu Li	Xiao Yang	Lianrong Pu
zhenhao guo	Sotanto Sotanto	Chong SHEN
Limin Jiang	Liang Xu	Junwei Wang
Kun Zhan	chaomin luo	Zhe Yan
Cheng-Hsiung Chiang	Rohitash Chandra	Rui Song

Xin Shao	Jiangning Song	Xiong Yuanpeng
Xinhua Tang	Rafal Kozik	Jing Xu
Claudia Guldimann	Wenyan Gu	Zou Zeyu
Saad Abdullah Khan	Shiyin Tan	Y. H. Tsai
Bangyal	Yaping Fang	Chien-Yuan Lai
Giansalvo Cirrincione	Xiuxiu Ren	Guo-Feng Fan
Bing Wang	Antonino Staiano	Shaoming Pan
xiao xiancui	Aniello Castiglione	De-Xuan Zou
X Zheng	Qiong Wu	Zheng Chen
Vincenzo Randazzo	Atif Mehmood	Renzhi Cao
Huijuan Zhu	Wang Guangzhong	Ronggen Yang
DongYuan Li	Zheng Tian	Azis Azis
Jingbo Xia	Junyi Chen	Shelli Shelli
Boya Ji	meineng wang	Zhongming Zhao
Manilo Monaco	Xiaorui Su	Yongna Yuan
Xiao-Hua Yu	Jianping Yu	Kamal Al Nasr
Pierre Leblond	Jair Cervantes	Chuanxing Liu
Zu-Guo Yu	Lizhi Liu	Panpan Song
Jun Yuan	Junwei Luo	Joao Sousa
Shenggen Zheng	yuanyuan wang	Min Li
Xiong Chunhe	Jiayin Zhou	Wenying He
punam Kumari	Mingyi Wang	Kaikai Xu
Li Shang	Xiaolei Zhu	Ming Chen
Sandy Sgorlon	Jiafan Zhu	Laura Dominguez Jalili
Bo wei Zhao	Yongle Li	Vivek Kanhangad
XJ Chen	Hao Lin	Zhang Ziqi
Fang YU	Xiaoyin Xu	Davide Nardone
Takashi Kurmeoto	Shiwei Sun	Liangxu Liu
Huakuang Li	Hongxuan Hua	Huijian Han
Pallavi Pandey	Shiping Zhang	Qingjun Zhu
Yan Zhou	YuxiangTian	Hongluan Zhao
Mascot Wang	Zhenjia Wang	Chyuan-Huei Thomas
Chenhui Qiu	Shuqin Zhang	Yang
Haizhou Wu	Angelo Riccio	R. S. Lin
Lulu Zuo	Francesco Camastra	N. Nezu

Chin-Chih Chang	Congxu Zhu	Geethan
Hung-Chi Su	Deng Li	Brendan Halloran
Antonio Brunetti	Piyush Joshi	Yue Li
Xie conghua	Syed Sadaf Ali	Qianqian Shi
Caitong Yue	Qin Wei	Zhiqiang Tian
Li Yan	Kuan Li	Yang Yang
Tuozhong Yao	Teng Wan	Jalilah Arijah Mohd
Xuzhao Chai	Hao Liu	Kamarudin
Zhenhu Liang	Yexian Zhang	Jun Wang
Yu Lu	Xu Qiao	Ke Yan
Hua Tang	Ce Li	Hang Wei
Liang Cheng	Lingchong Zhong	David A Hendrix
Jiang Hui	Wenyan Wang	Ka-Chun Wong
Puneet Rawat	Xiaoyu Ji	Yuyan Han
Kulandaisamy	Weifeng Guo	Hisato Fukuda
Akila	Yuchen Jiang	Yaning Yang
Niu Xiaohui	Yuanyuan Huang	Lixiang Xu
Zhang Guoliang	Zaixing Sun	Yuanke Zhou
Egidio Falotico	Honglin Zhang	Shihui Ying
Peng Chen	Yu Jie HE	Wenqiang Fan
Cheng Wang	Benjamin Soibam	Zhao Li
He Chen	Sungroh Yoon	Zhe Zhang
Giacomo Donato	Mohamed Chaabane	Xiaoying Guo
Cascarano	Rong Hu	Yiqi Jiang
Vitoantonio Bevilacqua	youjie yao	Zhuoqun Xia
shaohua Wan	NaiKang Yu	Jing Sun
Jaya Sudha J.S	Carlo Bianca	Na Geng
Sameena Naaz	Giulia Russo	Chen Li
Cheng Chen	Dian Liu	Xin Ding
Jie Li	Cheng Liang	Balachandran
Ruxin Zhao	Iyyakutti Iyappan	Manavalan
Jiazhou Chen	Ganapathi	Bingqiang Liu
Abeer Alsadhan	Mingon Kang	Lianrong Pu
Guoliang Xu	zhang chuanchao	Di Wang
Fangli Yang	Hao Dai	Fangping Wan

Guosheng Han	Jialing Li	Gongxin Peng
Renmeng Liu	Yu-Wen-Tian Sun	Junbo Liang
Yinan Guo	Zhe Sun	Linjing Liu
Lujie Fang	Wentao Fan	Xian Geng
Ying Zhang	Wei Lan	Sheng Ding
Yinghao Cao	Jiancheng Zhong	Jun Li
xhize wu	Josue Espejel Cabrera	Laksono Kurnianggoro
Le Zou	José Sergio Ruiz	Minxia Cheng
G. Brian Golding	Castilla	Meiyi Li
Viktoriya Coneva	Juan de Jesus Amador	Qizhi Zhu
Alexandre Rossi	Nanxun Wang	PengChao Li
Paschoal	Rencai Zhou	Ming Xiao
Ambuj Srivastava	Moli Huang	Guangdi Liu
Prabakaran R	Yong Zhang	Jing Meng
Xingquan Zuo	Daniele Loiacono	Kang Xu
Jiabin Huang	Grzegorz Dudek	Cong Feng
Jingwen Yang	Joaquín Torres-	Arturo Yee
Liu Qianying	Sospedra	Yi Xiong
Markus J. Ankenbrand	Xingjian CHEN	Fei Luo
Jianghong Meng	Saifur Rahaman	Xionghui Zhou
tongchi zhou	Olutomilayo Petinrin	Kazunori Onoguchi
Zhi-Ping Liu	Xiaoming Liu	Hotaka Takizawa
Xinyan Liang	Xin Xu	Suhang Gu
Xiaopeng Jin	Zi-Qi Zhu	Zhang Yu
Jun Zhang	Ms.Punam Kumari	Bin Qin
Yumeng Liu	Ms.Pallavy Pandey	Yang Gu
Junliang Shang	Najme Zehra	Zhibin Jiang
LM Xiao	Zhenqing Ye	Chuanyan Wu
Shang-han Li	Hao Zhang	Wahyono Wahyono
Jianhua Zhang	Zijing Wang	Van-Dung Hoang
Han-Jing Jiang	Lida Zhu	My-Ha Le
Daniele Nardi	Lvzhou Li	Kaushik Deb
Kunikazu	Junfeng Xia	Danilo Caceres
Shenglin Mu	Jianguo Liu	Alexander Filonenko
Jing Liang	Jia-Xiang Wang	Van-Thanh Hoang

Ning Guo	Minghua Zhao	Muhammad Suhail
Deng Chao	Cheng Shi	Saleem
Soniya Balram	Jiulong Zhang	Neel Doshi
Jian Liu	Shui-Hua Wang	Masaki Murooka
Angelo Ciaramella	Xuefeng Cui	Huitan Mao
Yijie Ding	Sandesh Gupta	Christos K. Verginis
Ramakrishnan	Nadia Siddiqui	Joon Hyub Lee
Nagarajan Raju	Syeda Shira Moin	Gennaro Notomista
Kumar Yugandhar	Sajjad Ahmed	Donghyeon Lee
Anoosha Paruchuri	Ruidong Li	Mohamed Hasan
Dhanusa	Mauro Castelli	ChangHwan Kim
jino blessy	Leonardo Bocchi	Vivek Thangavelu
Agata Gie	Leonardo Vanneschi	Alvaro Costa-Garcia
Lei Che	Ivanoe De Falco	David Parent
Yujia Xi	Antonio Della Cioppa	Oskar Ljungqvist
Ma Haiying	Kamlesh Tiwari	Long Cheng
Huanqiang Zeng	Puneet Gupta	Huajuan Huang
Hong-Bo Zhang	Zuliang Wang	Vasily Aristarkhov
Yewang Chen	Luca Tiseni	Zhonghao Liu
Farheen Sidiqqui	Francesco Porcini	Lichuan Pan
Sama Ukyo	Ruizhi Fan	Yongquan Zhou
Parul Agarwal	Grigorios Skaltsas	Zhongying Zhao
Akash Tayal	Mario Selvaggio	Kunikazu Kobayashi
Ru Yang	Xiang Yu	Masato Nagayoshi
Junning Gao	Abdurrahman Eray	Atsushi Yamashita
Jianqing Zhu	Baran	Wei Peng
Joel Ayala	Alessandra Rossi	Haodi Feng
Haizhou Liu	Jacky Liang	Jin Zhao
Nobutaka Shimada	Robin Strudel	Shunheng Zhou
Yuan Xu	Stefan Stevsic	Xinguo Lu
Ping Yang	Ariyan M. Kabir	Xiangwen Wang
Chunfeng Shi	Lin Shao	Zhe Liu
Shuo Jiang	Parker Owan	Pi-Jing Wei
Xiaoke Hao	Rafael Papallas	Bin Liu
Lei Wang	Alina Kloss	Haozhen Situ

Meng Zhou	Nathan D. Kent	Vladimir Shakhov
Muhammad Ikram	Areesha Anjum	Daniele Leonardis
Ullah	Sanjay Sharma	Simona Crea
Hui Tang	Shaojin Geng	Byungkyu Park
Sakthivel Ramasamy	Andrea Mannini	Pau Rodr\´
Akio Nakamura	Van-Dung Hoang	Alper Gün
Antony Lam	He yongqiang	Mehmet Fatih Demirel
Weilin Deng	Kyungsook Han	Elena Battini
Haiyan Qiao	Long Chen	Radzi Ambar
Xu Zhou	Jialin Lyu	Mohamad farhan
Shuyuan Wang	Zhenyang Li	Mohamad mohsin
Rabia Shakir	Tian Rui	Nur Azzah Abu Bakar
Shixiong Zhang	Khan Alcan	Noraziah ChePa
Xuanfan Fei	Alperen Acemoglu	Sasalak Tongkaw
Fatih Ad	Duygun Erol Barkana	Kumar Jana
Aysel ersoy Yilmaz	Juan Manuel Jacinto	Hafizul Fahri Hanafi
Haotian Xu	Villegas	Liu Jinxing
zekang bian	Zhenishbek Zhakypov	Alex Moopenn
Shuguang Ge	Domenico Chiaradia	Liang Liang
Dhiya Al-Jumeily	Huiyu Zhou	Ling-Yun Dai
Thar Baker	Yichuan Wang	Raffaele Montella
Haoqian Huang	Sang-Goo Jeong	Maratea Antonio
Siguo Wang	Nicolò Navarin	Xiongtao zhang
Huan Liu	Eray A. Baran	Sobia Pervaiz Iqbal
Jianqing Chen	Jiakai Ding	Fang Yang
Chunhui Wang	Dehua Zhang	Si Liu
Xiaoshu Zhu	Giuseppe Pirlo	Natsa Kleanthous
Wen Zhang	Alberto Morea	Zhen Shen
Yongchun Zuo	Giuseppe Mastronardi	Jing Jiang
Dariusz Pazderski	Insoo Koo	Shamrie Sainin
Elif Hocaoglu	Dah-Jing Jwo	Suraya Alias
hyunsoo kim	Yudong Zhang	Mohd Hanafi Ahmad
Park Singu	Zafaryab Haider	Hijazi
Saeed Ahmed	Mahreen Saleem	Mohd Razali Tomari
Youngdoo Lee	Quang Do	Chunyan Fan

Jie Zhao	Yu Hu	Qiyue Lu
Yuchen Zhang	Haya Alaskar	Geethan Mendiz
Casimiro	Baohua Wang	Dong Li
Dong-Jun Yu	Hanfu Wang	Di Liu
Jianwei Yang	Hongle Xie	Feilin Zhang
Wenrui Zhao	Guangming Wang	Haibin Li
Di Wu	Yongmei Liu	Heqi Wang
Chao Wang	Fuchun Liu	Wei Wang
Alex Akinbi	Farid Garcia-Lamont	Tony Hao
Fuyi Li	Yang Li	Yingxia Pan
Fan Xu	Hengyue Shi	Chenglong Wei
Guangsheng Wu	Gao Kun	My Ha Le
Yuchong Gong	Wenzheng Ma	Yu Chen
Weitai Yang	Jin Sun	Eren Aydemir
Mohammed Aledhari	Ruiwen Xing	Naida Fetic
Yanan Wang	Lianxin Zhong	Bing Sun
Bo Chen	Hongyuan Zhang	Zhenzhong Chu
Binbin Pan	Han Xupeng	Meijing Li
Chunhou Zheng	Mon Hian Chew	Wentao Chen
Abir Hussain	Jianxun Mi	Mingpeng Zheng
Chen Yan	Michele Scarpiniti	Zhihao Tang
Dhanjay Singh	Hugo Morais	Li keng Liang
Bowen Song	Fing Qiao Wang	Alamgir Hossain

Fengqiang Li	Umarani Jayaraman	Ghada Abdelmoumin
Chenggang Lai	Somnath Dey	Han-Zhou Wu
Dong Li	Guanghui Li	Antonio Junior Spoleto
Shuai Liu	Lihong Peng	Zhenghao Shi
Cuiling Huang	Wei Zhang	Ya Wang
Lian-Yong Qi	Hailin Chen	Tao Li
Qi Zhu	Fabio Bellavia	shuyi zhang
Wenqiang Gu	Giosue' Lo Bosco	Xiaoqing Li
Haitao Du	Giuseppe Salvi	Yajun Zou
Bingbo Cui	Giovanni Acampora	Chuanlei Zhang
Qinghua Li	Zhen Chen	Berardino Prencipe
Xin Juan	Enrico De Santis	Feng Liu
Emanuele Principi	Xing Lining	Yongsheng Dong
Xiaohan Sun	Wu Guohua	Yatong Zhou
Inas Kadhim	Dong Nanjiang	Carlo Croce
Jing Feng	Jhony Heriberto	Rong Fei
Xin Juan	Giraldo Zuluaga	Zhen Wang
Hongguo Zhao	Waqas Haider Bangyal	Huai-Ping Jin
Masoomeh Mirrashid	CongFeng	Mingzhe She
Jialiang Li	Autilia Vitiello	Sen Zhang
Yaping Hu	TingTing Dan	Yifan Zheng
Xiangzhen Kong	Haiyan Wang	Christophe Guyeux
Mi-Xiao Hou	Angelo Casolaro	Jun Sang
Zhen Cui	Dandan Lu	huang wenzhun
Juan Wang	Bin Zhang	Jun Wu
Na Yu	Raul Montoliu	Jing Luo
Meiyu Duan	Sergio Trilles	Wei Lu
Pavel Osinenko	Xu Yang	Heungkyu Lee
Chengdong Li	Fan Jiao	Yinlong Qian
Stefano Rovetta	Li Kaiwen	Hong wang
Mingjun Zhong	Wenhua Li	Daniele Malitesta
Baoping Yuan	Ming Mengjun	Fenqiang Zhao
Akhilesh Mohan	Ma Wubin	Xinghuo Ye
Srivastatva	Cuco Cristanno	Hongyi Zhang
Vivek Baghel	Chao Wu	Xuexin Yu

Guanshuo Xu	Rahul Kumar	Han-Gyu Kim
Mehdi Yedroudj	Alessandra Scotto	Dongkun Lee
Xujun Duan	Freca	Jonghwan Hyeon
Xing-Ming Zhao	Nicole Cilia	Chae-Gyun Lim
Jiayan Han	Alessandro Aliberti	Nicola Altini
Yan Xiao	Gabriele Ciravegna	Claudio Gallicchio
Weizhong Lu	Jacopo Ferretti	Dingna Duan
Weiguo Shen	Jing Yang	Shiqiang Ma
Hongzhen Shi	Zheheng Jiang	Mingliang Dou
Zeng Shangyou	Dan Yang	Jansen woo
Zhou Yue	Dongxue Peng	Shanshan
TaeMoon Seo	Wenting Cui	ShanShan Hu
Sergio Cannata	Francescomaria Marino	Hai-tao Li
Weiqi Luo	Wenhao Chi	Francescomaria Marino
Feng Yanyan	Ruobing Liang	Jiayi Ji
Pan Bing	Feixiang Zhou	Jun Peng
Jiwen Dong	Jijia Kang	Jie Hu
Yong-Wan Kwon	Xinshao Wang	Jipeng Wu
Heng Chen	Huawei Huang	Shirley Meng
S.T. Veena	Zhi Zhou	Prashan Premaratne
J. Anita Christaline	Yanrui Ding	Lucia Ballerini
R. Ramesh	Peng Li	Haifeng Hu
Shadrokh Samavi	Yunfeng Zhao	JianXin Zhang
Amin Khatami	Guohong Qi	Xiaoxiao Sun
Min Chen	Xiaoyan Hu	Shaomin Mu
He Huang	Li Guo	Yongyu Xu
Qing Lei	Xia-an Bi	Jingyu Hou
Shuang Ye	Xiuquan Du	Zhixian Liu
Francesco Fontanella	Ping Zhu	
Kang Jijia	Young-Seob Jeong	

Sponsors

Co－0rganized by	
它波东方理工大学（暂名）	
Eastern Institute of Technology	

Technically Co-sponsored by	
	The National Natural Science Foundation of China
	The International Neural Network Society
International Partners	
	Liverpool John Moores University, Liverpool, UK
Kazan Federal UNIVERSITY	Kazan Federal University, RUS

The Location of Conference Venue

Conference Venue

ICIC 2023 Conference Venue is Glory Hotel（www．gloryhotel．cc），which is located in the center of Zhengzhou High－tech Industrial Development Zone，with a square in front of it，a park behind it，a large supermarket and a municipal hospital all around it．It is a well－known landmark building of the high－tech zone，the most prosperous economic and commercial center of the high－tech zone，and the largest transportation hub of the high－tech zone．The many lines of Bus Rapid Transits（BRT）are connected with major transportation hubs in the city．It is close to Metro Line 1，Zhengzhou Ring Expressway，Zhengshao Expressway and Lianhuo Expressway，so the transportation is very convenient．It is only an agricultural viaduct distance from Zhengdong New District．Advantageous geographical location，strong cultural atmosphere，beautiful environment，very suitable for the conference team to stay．The hotel is a four－star business hotel integrating accommodation，conference，fitness，leisure and entertainment．

It covers an area of 38000 square meters with a building area of 100,000 square meters．The hotel had reinstalled in April 2023．It has 318 executive，luxury，business and other rooms，which can provide accommodation for 550 people．Has the international standard of the conference center，the size of a total of 11 venues，can meet the needs of 30－1000 people meeting reception；The hotel has 17 banquet rooms and $2700-1000$ square banquet halls，which can serve 1000 people at the same time．The best large－scale sports center has the most complete facilities and equipment in Henan Province．It has national standard swimming pool，indoor tennis hall，badminton hall，table tennis hall，a full set of Italy imported Technogym fitness equipment，to meet your sports needs．Has a large ground parking lot，ground parking space up to 500．The hotel is also the conference reception service unit for provincial，municipal and direct Party and government agencies for many years．

Location and Road Map

光华大酒店位置图

General Information

I．Conference Working Language

English is the official language of the conference．

II．Conference Registration

The ICIC 2023 registration desk，located in the lobby of Glory Hotel，Zhengzhou，the first floor， will be open during the following hour：
－August 10， 2023 （Thursday） $4: 00 \mathrm{pm}-8: 00 \mathrm{pm}$
－August 11， 2023 （Friday）8：30am－6：00pm

III．Conference Events

The ICIC 2023 events are scheduled as follows：
－Reception：18：00－20：30 pm，August 10， 2023 （Friday）： $1^{\text {nd }}$ floor，European Garden Hall（一楼欧洲花园厅），Glory Hotel，Zhengzhou．
－Banquet：19：00－21：00 pm，August 12， 2023 （Saturday）： $1^{\text {th }}$ floor，Golden Hall（一楼金色大厅）， Glory Hotel，Zhengzhou．
－All the meals but Reception and Banquet： $1^{\text {nd }}$ floor，European Garden Hall（一楼欧洲花园厅）．

IV．Conference Rooms

- Plenary Lecture，Metagalaxy Hall， $3^{\text {rd }}$ floor（三楼宇宙厅），Glory Hotel，Zhengzhou．
- Room A，Mercury Hall， $3^{\text {rd }}$ floor（三楼水星厅），Glory Hotel，Zhengzhou．
- Room B，Jupiter Hall， $3^{\text {rd }}$ floor（三楼木星厅），Glory Hotel，Zhengzhou．
- Room C，Moon Hall， $3^{\text {rd }}$ floor（三楼月亮厅），Glory Hotel，Zhengzhou．
- Room D，Sun Hall， $3^{\text {rd }}$ floor（三楼太阳厅），Glory Hotel，Zhengzhou．

V．Information for Oral Presenters

－Please prepare a 10 －minute PowerPoint（PPT）slide．Your actual presentation time may depend on the number of presentations in your session．
－Please check this Final Program for your presentation time and room．Please go to the room five minutes before the session starts and report to the Session Chair．
－Please follow the instructions of the Session Chair（s）not to exceed your time allotted to you by them．
－If the Session Chair（s）is／are absent from the session，the last speaker is requested to serve as the Session Chair．

VI．Information for Session Chairs

The Organizing Committee would like to ask for your kind help as Session Chair（s）．If you cannot fulfill your duties as session chair，please try to make sure that someone else will take your place as Session Chair（s）．
As a Session Chair，you are kindly requested to help at the following：
－Arrive at the room of the session at least 5 minutes before the session starts and identify each of the speakers for the session．

- Calculate and announce the time allocated for each paper in your session for only the authors present before the session starts.
- The time allocated to a paper may be different in different sessions, due to uneven distribution of papers in different areas and a small number of absentees due to visa and other reasons. Request the presenters to leave 2 minutes for question and answers.
- Each oral presentation room is equipped with an LCD projector. If something is not working properly, please contact conference helper in the room.

Schedule Overview

Date	Morning	Afternoon	Evening
August 10 Thursday	Registration (4:00 pm-8:00 pm)		
August 11 Friday (Metagal axy Hall, $3^{\text {rd }}$ floor)	Opening Ceremony Session 08:00-08:20 am	Lunch time: 12:00-13:30pm	Reception: 18:00-19:30 pm
	Plenary Speaker I: C.L. Philip Chen Chair: De-Shuang Huang 08:20-09:10 am	Plenary Speaker V: Fangxiang Wu Chair: Guangwu Hu $14: 00-14: 50 \mathrm{pm}$	
	Plenary Speaker II: Yongduan Song Chair: Jiaofen Nan 09:10-10:00 am	Plenary Speaker VI: Vasu Alagar Chair: Yu Wang 14:50-15:40 pm	
	Coffee Break: 10:00-10:20 am	Coffee Break: 15:40-16:00 pm	
	Plenary Speaker III: Andrew E Teschendorff Chair: De-Shuang Huang 10:20-11:10 am	Plenary Speaker VII: Tiantian Xu Chair: Weiwei Zhang 16:00-16:50 pm	
	Plenary Speaker IV: Prashan Premaratne Chair: Zhijuan Jia 11:10-12:00 am	Plenary Speaker VIII: Lefei Zhang Chair: Kaili Shao 16:50-17:40 pm	
August 12 Saturday	Oral Presentation 08:00-10:00am Room A, Room B, Room C, Room D	Oral Presentation 14:00-15:00pm Room A, Room B, Room C, Room D	$\begin{gathered} \text { Banquet } \\ \text { 19:00-21:00 } \\ \text { pm } \end{gathered}$
	Coffee Break: 10:00-10:10am	Coffee Break: 15:00-5:10pm	
	Oral Presentation 10:10-12:10am Room A, Room B, Room C, Room D	Oral Presentation 15:10-18:10pm Room A, Room B, Room C, Room D	
August 13 Sunday	Free Activity		

Introduction of Plenary Speakers

- Plenary Speaker I: Vasu Alagar

Patient-Centered Treatment Based on Semantics of Similar

Situations
Vasu Alagar, PhD, Professor Emeritus
Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada H3G 1M8

Abstract

In patient-centered care the attending physician, in consultation with the patient, determines a personalized treatment plan for the patient. In order to avoid delay and expensive pre-diagnosis procedure, it is suggested that the knowledge of existing patient cohort be used for comparative effectiveness studies and better understanding of patient health situation. In this talk we define a health situation to include disease type, drugs administered, and set of reactions. By a similarity computation on health situations, it is possible to discover patient cohort for a given patient

 provided the similarity is based on correct semantics. We propose a formal generic structure of Electronic Health Record (HER) in which a situation can be formally represented. By formal we mean the situation characteristics are captured by different attributes and their data types in HER, thus a HER is the virtual patient having the health situation. We explain scoring functions for attribute pairs, defined on ontology-based semantic graphs, and how they are aggregated to compute similarity between situations. We have found several scoring functions. The experimental results demonstrate that they are all effective in ranking the patients in a cohort group. We believe that by leveraging drug similarity in combination with disease similarity, our method could support the treating team to remain more vigilant and prepared for any disease complication or detection of new symptoms at the earliest. It can lead them to take quick and confident decisions with better outcome.Bio-Sketch: Vasu Alagar is an Emeritus Professor in the Department of Computer Science and Software Engineering at Concordia University, Montreal, Canada. His academic career, spawning over four decades, has been rich and varied that includes Algorithm Development and Complexity Analysis, Formal Methods, Language Semantics, and Rigorous Development of Large Complex Systems. His recent research centers around Formal Component-based Software Development, Context-aware Systems, and in particular the embedding of context in programming languages and Service-oriented Systems, and Big Data discovery and Analytic. He has written and edited several books and conference proceedings. He has graduated more than 150 masters and PhD students, and his research results are widely published in many journals and conferences.

Plenary Speaker II: C.L. Philip Chen

Fuzzy Broad Learning (Neuro) Systems (FBLS): Explainability and

Analysis on the Tradeoff between Accuracy and Complexity

C.L. Philip Chen, FIEEE, FAAAS, FIAPR, MAE
Dean, School of Computer Science and Engineering, South China University and Technology

Abstract

The fuzzy broad learning system (FBLS) is a recently proposed neuro-fuzzy model that shares the similar structure of a broad learning system (BLS). It shows high accuracy in both classification and regression tasks and inherits the fast computational nature of a BLS. However, the ensemble of several fuzzy subsystems in an FBLS decreases the possibility of understanding the fuzzy model since the fuzzy rules from different fuzzy systems are difficult to combine together while keeping the consistence. To balance the model accuracy and complexity, this talk is to

 discuss a synthetically simplified FBLS with better interpretability, named compact FBLS (CFBLS), which can generate much fewer and more explainable fuzzy rules for understanding. In such a way, only one traditional Takagi-Sugeno-Kang fuzzy system is employed in the feature layer of a CFBLS, and the input universe of discourse is equally partitioned to obtain the fuzzy sets with proper linguistic labels accordingly. The random feature selection matrix and rule combination matrix are employed to reduce the total number of fuzzy rules and to avoid the "curse of dimensionality." The experiments on the popular datasets indicate that the CFBLS can generate a smaller set of comprehensible fuzzy rules and achieve much higher accuracy than some state-of-the-art neuro-fuzzy models. Moreover, the advantage of CFBLS is also verified in a real-world application.Bio-sketch: C. L. Philip Chen is the Chair Professor and Dean of the College of Computer Science and Engineering, South China University of Technology. He is a Fellow of IEEE, AAAS, IAPR, CAA, and HKIE; a member of Academia Europaea (AE), and a member of European Academy of Sciences and Arts (EASA). He received IEEE Norbert Wiener Award in 2018 for his contribution in systems and cybernetics, and machine learnings, and IEEE Joseph G. Wohl Outstanding Career award, and Wu WenJun Outstanding Contribution award from Chinese AI Association, received two times best transactions paper award from IEEE Transactions on Neural Networks and Learning Systems for his papers in 2014 and 2018. He is a highly cited researcher by Clarivate Analytics from 2018-2022. His current research interests include cybernetics, systems, and computational intelligence. He was the Editor-in-Chief of the IEEE Transactions on Cybernetics, the Editor-in-Chief of the IEEE Transactions on Systems, Man, and Cybernetics: Systems, and the President of IEEE Systems, Man, and Cybernetics Society.

Plenary Speaker III: Prashan Premaratne

Human Computer Interaction Using Hand Gestures - Past, Present

and Future
Prashan Premaratne, PhD \& Senior Lecturer
Senior Member IEEE, Australian TEQSA Expert in Artificial Intelligence
School of Electrical, Computer \& Telecommunications Engineering
University of Wollongong, New South Wales, Australia

Abstract

Today, with the advent of technology especially due to advances in artificial intelligence, voice recognition-based computer interactions are unprecedented. Due to the lightening advances in object detection with the emergence of YOLO algorithms, object detection is highly accurate and in realtime. Yet, hand gesture recognition hasn't received the same advancements due to many challenges it faced. One of the major challenges is the temporal information present in hand signs which are dynamic in nature. They convey a message few sentences in length. Despite the modern research is highly advanced in detecting objects in images using massive

 computing power, tracking a hand sign with its intricate details and interpreting a dynamic hand gesture has been an enormous challenge. Many researchers predict that RNN will be the future for recognising such temporal visual data, yet, the results are still in its infancy.Bio-Sketch: Prashan was born in Sri Lanka in 1972 and was awarded an Australian government scholarship under John Crawford Scholarship Scheme (JCSS) to pursue undergraduate studies at the University of Melbourne, Australia in 1994. Since 2003, he has been an academic at the University of Wollongong, Australia and is currently a Senior Lecturer at the School of Electrical, Computer and Telecommunications Engineering. In 2005, he developed a computer vision-based system to control any computer interface which resulted in worldwide acclaim which was called 'The Wave Controller'. Dr. Premaratne is a Senior Member of IEEE and is the author of the book "Human Computer Interaction Using Hand Gestures" published by Springer International. Dr. Premaratne has been a founding member of the International Conference on Intelligent Computing (ICIC). He has been the program co-chair, tutorial chair, plenary speech chair and International Liaison Chair for the past 19 years and has received Outstanding Leadership Award for his contribution to ICIC in 2015. Dr. Premaratne has published over one hundred publications and is also a reviewer for major International Journals. He has been Guest Editor for many technological Journals over the years and was also an Assistant Editor of Springer Journal of Cognitive Science.

Plenary Speaker IV: Yongduan Song

Several Critical Issues in Neural Network (NN) Driven Control Design

 and AnalysisYongduan Song, IEEE/AAIA/CAA Fellow, FIEAS, IEEE TNNLS Editor-in-Chief

Dean, Research Institute of Artificial Intelligence, Chongqing University.

Abstract

Neural networks and related learning algorithms are crucial components of artificial intelligence. The utilization of neural networks combined with learning algorithms for controller design has become a mainstream direction in the field of intelligent control. This talk will examine the typical NN driven design approaches and expose several critical issues related to functionality and effectiveness of the NN based control methods.

Bio-Sketch: Professor Yong-Duan Song is a Fellow of IEEE, Fellow of AAIA, Fellow of International Eurasian Academy of Sciences, and Fellow of Chinese Automation Association. He was one of the six Langley Distinguished Professors at National Institute of Aerospace (NIA), USA and register professional engineer (USA). He is currently the dean of Research Institute of Artificial Intelligence at Chongqing University. Professor Song is the Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems (TNNLS) and the founding Editor-in-Chief of the International Journal of Automation and Intelligence.

Plenary Speaker V: Andrew E Teschendorff

Using Network Physics to Improve Analysis and Interpretation of

Single-Cell Omic Data

Andrew E Teschendorff, PhD \& Professor
Head of Computational Systems Epigenomics, CAS Key-Lab of Computational Biology, Shanghai Institute for Nutrition and Health, Chinese Academy of Sciences, and Honorary Research Fellow University College London

Abstract: Graph-theory and network physics are branches of complexity science that have found ubiquitous successful applications in science generally. This talk will describe a number of concrete examples where network-theoretical concepts have entered the relatively young field of single-cell genomics, driving important breakthroughs and discoveries. One example shows how the differentiation state of single cells can be successfully modelled in terms of the diffusion network entropy of a stochastic signaling process in the cell. The talk will further describe how this concept has led to the identification of cancer-stem-cells, the presumed cells of origin of tumors, opening up new strategies for personalized and preventive medicine. Another example explores the use of node-attribute-aware clustering algorithms to detect differential abundance of cell-types in relation to aging and disease. I will demonstrate how cell-attribute aware clustering of single-cell data can improve the sensitivity to detect important shifts in cell-type abundance, including increased stem-cell fractions in colonic polyps or loss of olfactory sensory neurons in Covid-19 patients experiencing long-term smell loss.
Bio-sketch: Andrew Teschendorff studied Mathematical Physics at the University of Edinburgh (1990-1995) under the supervision of Physics Nobel Laureate Peter Higgs. In 2000 he obtained a PhD in Theoretical Physics from Cambridge University. In 2003 he became a Senior Research Fellow in Statistical Cancer Genomics at the University of Cambridge. In 2008 he moved to University College London (UCL) to work in Statistical Cancer Epigenomics and where he was awarded the Heller Research Fellowship. He currently holds an appointment as a PI at the CAS Key Lab of Computational Biology in Shanghai, formerly a joint CAS-Max-Planck Partner Institute for Computational Biology, and remains an Honorary Research Fellow at University College London. His research interests are broad and include Cancer System-omics \& Systems Biology and Network Physics. He is well-known for developing pioneering statistical methods for analyzing various forms of genomic data, notably epigenomics and single-cell data. Professor A. Teschendorff has a Google H-index of 77, more than 150 peer-reviewed publications, including 8 book-chapters. He is an Associate Editor for many journals, including notably Genome Biology, and a reviewer and statistical advisor for journals that include Nature, Science, Bioinformatics, PLoS Computational Biology and IEEE Transactions on Computational Biology \& Bioinformatics. He is a recipient of the Wolfson College Jennings Prize, Cambridge-MIT Initiative and Isaac Newton Trust Awards, a Wellcome Trust VIP Award, a CAS Visiting Professorship and a CAS-Royal Society Newton Advanced Fellowship. He holds various patents on algorithms for cancer risk prediction and cell-type deconvolution.

Plenary Speaker VI: FangXiang Wu

Intelligent Computing: from Matrix Factorization to Deep Network,

for Biomarker Discovery

FangXiang Wu, PhD \& Professor
Departments of Computer Science, Biomedical Engineering, and Mechanical Engineering, the University of Saskatchewan.

Abstract

Intelligent computing refers to the field of computer science and technology that focuses on developing computational systems and algorithms to perform tasks that typically require human intelligence. As one of intelligent computing subfields, machine learning focuses on designing and training computer algorithms to learn from and act on data. A biomarker is a measurable indicator of some biological state or condition, including molecular biomarkers, cellular biomarkers, or digital biomarkers. In this talk, after an introduction to machine learning formulation, I will present some of research work from my group in the areas of intelligent computing, from matrix factorization to deep network, for molecular

 biomarker discovery.Bio-sketch: Dr FangXiang Wu is currently a full professor in the Departments of Computer Science,Biomedical Engineering, and Mechanical Engineering at the University of Saskatchewan. His research interests include Artificial Intelligence,Machine, Deep Learning,Computational Biology, Health Informatics, Medical Image Analytics, and Complex Network Analytics. Dr. Wu has published about 350 journal papers and more than 130 conference papers.?His total google scholar citations are over 13000, h-index is 55 (dated in early June, 2023). He is among top 2% world's scientists ranked by Stanford University. Dr Wu is serving as the editorial board member of several international journals (including IEEE TCBB, Neurocomputing, etc.) and as the guest editor of numerous international journals, and as the program committee chair or member of many international conferences. He is an IEEE senior member.

Plenary Speaker VII: Tiantian Xu

Motion Control of Magnetically Actuated Microrobots Towards

Targeted Therapy

Tiantian Xu, PhD \& Professor
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Abstract

Untethered, wirelessly controlled microrobots have a broad application prospects for the bioengineering due to their small scales. Multiple small-scale robots enable cooperation and increase the operating efficiency. However, independent control of multiple magnetic small-scale robots is a great challenge, because the robots receive identical control inputs from the same external magnetic field. We propose a novel strategy of completely decoupled independent control of magnetically actuated flexible swimming millirobots. The strategy is verified by experiments of independent position control of up to four millirobots and independent path following control of up to three millirobots with small errors. Then, we propose an adaptive leader-follower formation control of two magnetically actuated millirobots with heterogeneous magnetization and achieved an autonomous navigation in confined environments.

Bio-sketch: Tiantian Xu is currently Professor in Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. She received the Ph.D. degree at University of Pierre and Marie Curie, Paris, France. Her research interests are currently focused on magnetic microrobots, soft robots, medical robots, and etc. She has published over 20 IEEE Transactions papers, including TRO, T-cyber, TMECH, TASE, 6 of them are ESI high cited papers. She has received the NSFC excellent young scholar in 2020, the best application paper award in IROS2019, and the Second Prize of Wu Wenjun Natural Science of Artificial Intelligence in 2021 as first author, CAA Young Scientist. She is associate editor for TRO, TASE and RAL.

Plenary Speaker VIII: Lefei Zhang

AI Innovation for Big Vision Data

Lefei Zhang, PhD \& Professor
School of Computer Science, Wuhan University, Wuhan, China.

Abstract: Artificial intelligence (AI) plays a growing role in all traditional areas. In this talk, we will introduce our recently developed AI techniques for computer vision data processing tasks, including image super-resolution, inpainting, semantic segmentation, and object detection. From these successful examples, we observe that the carefully designed AI algorithms and networks are usually inspired by human experiences of solving problems in practice. Furthermore, benefit from the strong support of the computational resources and big data, AI algorithms could reach even exciting performance. However, there are also critical concerns exist. In the future work, we will study how to run the AI models with extremely limited human expert labeled data, to serve for more challenging tasks such as autonomous driving and medical data analysis.q
Bio-sketch: Lefei Zhang received the B.S. and Ph.D. degrees from Wuhan University, Wuhan, China, in 2008 and 2013, respectively. He was a Big Data Institute Visitor with the Department of Statistical Science, University College London, U.K., and a Hong Kong Scholar with the Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China. He is a professor with the School of Computer Science, Wuhan University, Wuhan, China, and also with the Hubei Luojia Laboratory, Wuhan, China. His research interests include pattern recognition, image processing, and remote sensing. Dr. Zhang serves as a topical editor of IEEE Transactions on Geoscience and Remote Sensing, an associate editor of Pattern Recognition, and a section editor-in-chief of Remote Sensing.

Parallel Sessions for Oral Presentations

Room Time	Room A	Room B	Room C	Room D
$\begin{gathered} \text { Morning } \\ \text { Aug. } 12 \\ \text { 8:00-10:00 } \end{gathered}$	Intelligent Optimization Algorithms Chair: Ben Niu	Intelligent Computing in Computer Vision Chair: Guangwu Hu	Machine Learning Chair: Zheng Chen	Neural Networks Chair: Mengqi Wu
$\begin{gathered} \text { Morning } \\ \text { Aug. } 12 \\ 10: 10-12: 10 \end{gathered}$	Intelligent Optimization Algorithms Chair: Jiangpo Wei	Image Processing Chair: Prashan Premaratne	Machine Learning Chair: Shaoming Ji	Reinforcement Learning Chair: Qingqing Wang
$\begin{gathered} \text { Afternoon } \\ \text { Aug. } 12 \\ \text { 13:30-15:30 } \end{gathered}$	Intelligent Data Analysis and Prediction Chair: Siyu Peng	Signal Processing Chair: Abir Hussain	Intelligent Computing in Computational Biology Chair: Yingjie Long	Medical Image Analysis Chair: Meng Zhang
$\begin{gathered} \text { Afternoon } \\ \text { Aug. 12 } \\ \text { 15:40-17:40 } \end{gathered}$	Knowledge Discovery and Data Mining Chair: Chee Kiat Seow	Natural Language Processing and Computational Linguistics Chair: Qingqing Li	Biomedical Informatics Theory and Methods Chair: Yue Gao	Intelligent Computing in Drug Design Chair: Yijia Zhang

Detailed Parallel Sessions for Oral Presentations

Morning, August 12, Saturday, Room A	
	Intelligent Optimization Algorithms
Chair: Ben Niu	
$\begin{gathered} \text { Paper } 601 \\ \text { 08:00-08:12 } \end{gathered}$	Real-time Crowdsourced Delivery Optimization Considering Maximum Detour Distance Xianlin Feng, Rong Hu, Naikang Yu, Bin Qian, and Changsheng Zhang
$\begin{aligned} & \text { Paper } 654 \\ & \text { 08:12-08:24 } \end{aligned}$	Improving SHADE with a Linear Reduction P Value and a Random Jumping Strategy Yanyun Zhang, Guangyu Chen, and Li Cheng
$\begin{gathered} \text { Paper 508 } \\ \text { 08:24-08:36 } \end{gathered}$	A Region Convergence Analysis for Multi-mode Stochastic Optimization Based on Double-well Function Guosong Yang, Peng Wang, and Xinyu Yin
$\begin{gathered} \text { Paper } 732 \\ \text { 08:36-08:48 } \end{gathered}$	A Branch and Bound Algorithm for The Two-Machine Blocking Flowshop Group Scheduling Problem Sen Zhang, Bin Qian, Rong Hu, Changsheng Zhang, and Kun Li
$\begin{gathered} \text { Paper } 556 \\ \text { 08:48-09:00 } \end{gathered}$	Hyper-Heuristic Ant Colony Optimization Algorithm for Multi-objective Two-echelon Vehicle Routing Problem with Time Windows Qiuyi Shen, Ning Guo, Rong Hu, Bin Qian, and Jianlin Mao
$\begin{gathered} \text { Paper 598 } \\ \text { 09:00-09:12 } \end{gathered}$	Learning Variable Neighborhood Search Algorithm for Solving the Energy Efficient Flexible Job-shop Scheduling Problem Ying Li, Rong Hu, Xing Wu, Bin Qian, and Ziqi Zhang
$\begin{gathered} \text { Paper } 561 \\ 09: 12-09: 24 \end{gathered}$	Hyper-Heuristic Estimation of Distribution Algorithm for Green Hybrid Flow-shop Scheduling and Transportation Integrated Optimization Problem Ling Bai, Bin Qian, Rong Hu, Zuocheng Li, and Huaiping Jin
$\begin{gathered} \text { Paper } 586 \\ 09: 24-09: 36 \end{gathered}$	Learning Based Memetic Algorithm for the Monocrystalline Silicon Production Scheduling Problem Jianqun Gong, Zuocheng Li, Bin Qian, Rong Hu, and Bin Wang
$\begin{gathered} \text { Paper } 185 \\ 09: 36-09: 48 \end{gathered}$	Hybrid hyper-heuristic algorithm for integrated production and transportation scheduling problem in distributed permutation flow shop Wenbo Chen, Bin Qian, Rong Hu, Sen Zhang, and Yijun Wang
$\begin{gathered} \text { Paper 673 } \\ \text { 09:48-10:00 } \end{gathered}$	Q-learning Based Particle Swarm Optimization with Multi-exemplar and Elite Learning Haiyun Qiu, Bowen Xue, Qinge Xiao, and Ben Niu
	Morning, August 12, Saturday, Room B
	Intelligent Computing in Computer Vision
Chair: Guangwu Hu	

$\begin{gathered} \text { Paper } 296 \\ \text { 08:00-08:12 } \end{gathered}$	Brain Tumor Image Segmentation Network Based on Dual Attention Mechanism Fuyun He, Yao Zhang, Yan Wei, Youwei Qian, Cong Hu, and Xiaohu Tang
$\begin{gathered} \text { Paper } 684 \\ \text { 08:12-08:24 } \end{gathered}$	An Unsupervised Video Summarization Method Based on Multimodal Representation Zhuo Lei, Qiang Yu, Lidan Shou, Shengquan Li, and Yunqing Mao
$\begin{aligned} & \text { Paper } 771 \\ & \text { 08:24-08:36 } \end{aligned}$	UCLD-Net: Decoupling Network via Unsupervised Contrastive Learning for Image Dehazing Zhitao Liu, Tao Hong, and Jinwen Ma
$\begin{gathered} \text { Paper } 857 \\ \text { 08:36-08:48 } \end{gathered}$	A Driver Abnormal Behavior Detection Method Based on Improved YOLOv7 and OpenPose Xingquan Cai, Shun Zhou, Jiali Yao, Pengyan Cheng, and Yan Hu
$\begin{aligned} & \text { Paper } 737 \\ & \text { 08:48-09:00 } \end{aligned}$	InterFormer: Human Interaction Understanding with Deformed Transformer Di He, Zexing Du,Xue Wang, and Qing Wang
$\begin{gathered} \text { Paper 502 } \\ \text { 09:00-09:12 } \end{gathered}$	One-Dimensional Feature Supervision Network for Object Detection Longchao Shen, Yongsheng Dong,Yuanhua Pei,Haotian Yang,Lintao Zheng,and Jinwen Ma
$\begin{gathered} \text { Paper 754 } \\ \text { 09:12-09:24 } \end{gathered}$	Corneal ulcer automatic classification network based on improved Mobile ViT Chenlin Zhu, Wenyan Wang, Kun Lu, Jun Zhang, Peng Chen, Lejun Pan, Jiawei Ni, and Bing Wang
$\begin{gathered} \text { Paper 273 } \\ \text { 09:24-09:36 } \end{gathered}$	Siamese Adaptive template update Network for Visual Tracking Jia Wen, Kejun Ren, Yang Xiang, and Dandan Tang
$\begin{gathered} \text { Paper 156 } \\ \text { 09:36-09:48 } \end{gathered}$	Multi-Scale and Self-Mutual Feature Distillation Nianzu Qiao, Jia Sun, and Lu Dong
$\begin{gathered} \text { Paper 624 } \\ \text { 09:48-10:00 } \end{gathered}$	Use the Detection Transformer as a Data Augmenter Luping Wang and Bin Liu
	Morning, August 12, Saturday, Room C
	Machine Learning
Chair: Zheng Chen	
$\begin{gathered} \text { Paper 912 } \\ \text { 08:00-08:12 } \end{gathered}$	A no parameter synthetic minority oversampling technique based on Finch for imbalanced data Shoukun Xu, Zhibang Li, Baohua Yuan, Gaochao Yang, Xueyuan Wang, and Ning Li
$\begin{gathered} \text { Paper } 128 \\ \text { 08:12-08:24 } \end{gathered}$	K-means Based Transfer Learning Algorithm Yuanyuan Du, Bo Li, and Zhonghua Quan
$\begin{gathered} \text { Paper } 924 \\ \text { 08:24-08:36 } \end{gathered}$	Automatic Model Selection Algorithm Based on BYY Harmony Learning for Mixture of Gaussian Process Functional Regressions Models Xiangyang Guo, Tao Hong, and Jinwen Ma

Paper 817 08:36-08:48	TDRConv: Exploring the Trade-off Between Feature Diversity and Redundancy for a Compact CNN Module Haigen Hu, Deming Zhou, Hui Xu, Qi Chen, Qiu Guan, and Qianwei Zhou
Paper 971 08:48-09:00	GNAT: Leveraging Weighted Negative Sampling for Improved Graph Attention Network Performance Yujin Lu, Qi Wang, Wanyi Zhou, and Jeffrey Zheng
$\begin{gathered} \text { Paper } 504 \\ 09: 00-09: 12 \end{gathered}$	Zero-Shot Learning Based on Weighted Reconstruction of Hybrid Attribute Groups Jiarui Zhang, Ruilin Li, Nannan Yu, Jian Liu, and Yi Kong
$\begin{gathered} \text { Paper } 867 \\ 09: 12-09: 24 \end{gathered}$	Community Detection Using Revised Medoid-Shift Based on KNN Jiakang Li, Xiaokang Peng, Jie Hou, Wei Ke, and Yonggang Lu
$\begin{aligned} & \text { Paper } 663 \\ & 09: 24-09: 36 \end{aligned}$	Instance Weighting-based Noise Correction for Crowdsourcing Qiang Ji, Liangxiao Jiang, and Wenjun Zhang
$\begin{gathered} \text { Paper } 134 \\ 09: 36-09: 48 \end{gathered}$	2D-DLPP Algorithm Based on SPD Manifold Tangent Space Xiaohang Li, Bo Li, and Zonghui Wang
$\begin{aligned} & \text { Paper } 915 \\ & 09: 48-10: 00 \end{aligned}$	Terminology-Enriched Meta-Curriculum Learning for Domain Neural Machine Translation Zheng Chen and Yifan Wang
	Morning, August 12, Saturday, Room D
	Neural Networks
Chair: Mengqi Wu	
$\begin{gathered} \text { Paper 631 } \\ \text { 08:00-08:12 } \end{gathered}$	Solving Class Imbalance Problem in Target Detection with a Squared Cross Entropy Based Method Guanyu Chen, Quanyu Wang, Qi Li, Jun Hu, and Jingyi Liu
$\begin{gathered} \text { Paper } 886 \\ \text { 08:12-08:24 } \end{gathered}$	Speech Emotion Recognition Using Global-Aware Cross-Modal Feature Fusion Network Feng Li and Jiusong Luo
$\begin{gathered} \text { Paper } 118 \\ \text { 08:24-08:36 } \end{gathered}$	Adversarial Ensemble Training by Jointly Learning Label Dependencies and Member Models Lele Wang and Bin Liu
$\begin{gathered} \text { Paper } 119 \\ \text { 08:36-08:48 } \end{gathered}$	PFGE: Parsimonious Fast Geometric Ensembling of DNNs Hao Guo, Jiyong Jin, and Bin Liu
$\begin{gathered} \text { Paper 686 } \\ \text { 08:48-09:00 } \end{gathered}$	A Multi-granularity Decision Fusion Method Based on Category Hierarchy Jian-Xun Mi, Ke-Yang Huang, and Nuo Li
$\begin{gathered} \text { Paper 650 } \\ \text { 09:00-09:12 } \end{gathered}$	Modeling Working Memory using Convolutional Neural Networks for Knowledge Tracing Huali Yang, Bin Chen, Junjie Hu, Tao Huang, Jing Geng, and Linxia Tang

$\begin{gathered} \text { Paper 527 } \\ \text { 09:12-09:24 } \end{gathered}$	Solving Large-Scale Open Shop Scheduling Problem via Link Prediction Based on Graph Convolution Network Lanjun Wan, Haoxin Zhao, Xueyan Cui, Changyun Li, and Xiaojun Deng
$\begin{gathered} \text { Paper } 818 \\ \text { 09:24-09:36 } \end{gathered}$	Make Active Attention More Active: Using Lipschitz Regularity to Improve Long Sequence Time-Series Forecasting Xiangxu Meng, Wei Li, Wenqi Zheng, Zheng Zhao, Guangsheng Feng, and Huiqiang Wang
$\begin{gathered} \text { Paper } 883 \\ \text { 09:36-09:48 } \end{gathered}$	CharCaps: Character-level Text Classification using Capsule Networks Yujia Wu, Xin Guo, and Kangning Zhan
$\begin{gathered} \text { Paper 872 } \\ \text { 09:48-10:00 } \end{gathered}$	Attributed Multi-Relational Graph Embedding Based on GCN Zhuo Xie, Mengqi Wu, Guoping Zhao, Lijuan Zhou, Zhaohui Gong, and Zhihong Zhang
	Morning, August 12, Saturday, Room A
	Intelligent Optimization Algorithms
Chair: Jian	Nei
$\begin{gathered} \text { Paper } 799 \\ \text { 10:10-10:22 } \end{gathered}$	Runtime Analysis of Estimation of Distribution Algorithms for a Simple Scheduling Problem Rui Liu, Bin Qian, Sen Zhang, Rong Hu, and Nai-Kang Yu
$\begin{gathered} \text { Paper } 485 \\ \text { 10:22-10:34 } \end{gathered}$	Probability Learning Based Multi-Objective Evolutionary Algorithm for Distributed NoWait Flow-Shop and Vehicle Transportation Integrated Optimization Problem Ziqi Ding, Zuocheng Li, Bin Qian, Rong Hu, and Changsheng Zhang
$\begin{gathered} \text { Paper } 846 \\ \text { 10:34-10:46 } \end{gathered}$	Hyper-Heuristic Three-Dimensional Estimation of Distribution Algorithm for Distributed Assembly Permutation Flowshop Scheduling Problem Xiao Li, Zi-Qi Zhang, Rong Hu, Bin Qian, and Kun Li
$\begin{gathered} \text { Paper } 658 \\ \text { 10:46-10:58 } \end{gathered}$	A Learning-based Multi-objective Evolutionary Algorithm for Parallel Machine Production and Transportation Integrated Optimization Problem Shurui Zhang, Bin Qian, Zuocheng Li, Rong Hu, and Biao Yang
$\begin{gathered} \text { Paper } 575 \\ \text { 10:58-11:10 } \end{gathered}$	Improved EDA-based Hyper-heuristic for Flexible Job Shop Scheduling Problem with Sequence-Independent Setup Times and Resource Constraints Xinghan Qiu, Bin Qian, Ziqi Zhang, Zuocheng Li, and Ning Guo
$\begin{aligned} & \text { Paper 608 } \\ & \text { 11:10-11:22 } \end{aligned}$	A Q-learning-based Hyper-heuristic Evolutionary Algorithm for the Distributed Flexible Job-shop Scheduling Problem Fangchun Wu, Bin Qian, Rong Hu, Ziqi Zhang, and Bin Wang
$\begin{gathered} \text { Paper } 844 \\ \text { 11:22-11:34 } \end{gathered}$	Sparrow Search Algorithm Based on Cubic Mapping and Its Application Shuo Zheng, Feng Zou, and DeBao Chen
$\begin{gathered} \text { Paper } 842 \\ \text { 11:34-11:46 } \end{gathered}$	Nonlinear Inertia Weight Whale Optimization Algorithm with Multi-Strategy and its Application Congsong Li, Feng Zou, and Debao Chen
$\begin{gathered} \text { Paper } 510 \\ \text { 11:46-11:58 } \end{gathered}$	A Quantum Simulation Method with Repeatable Steady-State Output Using Massive Inferior Solutions Guosong Yang, Peng Wang, Gang Xin, and Xinyu Yin

$\begin{gathered} \text { Paper } 130 \\ \text { 10:10-10:22 } \end{gathered}$	HSIC Induced LncRNA Feature Selection Anjie Guo and Bo Li
$\begin{gathered} \text { Paper 645 } \\ \text { 10:22-10:34 } \end{gathered}$	BYOL Network Based Contrastive Clustering Xuehao Chen, Weidong Zhou, Jin Zhou, Yingxu Wang, Shiyuan Han, Tao Du, Cheng Yang, and Bowen Liu
$\begin{gathered} \text { Paper } 659 \\ \text { 10:34-10:46 } \end{gathered}$	Deep Multi-view Clustering based on Graph Embedding Chen Zhang, Weidong Zhou, Jin Zhou, Yingxu Wang, Shiyuan Han, Tao Du, Cheng Yang, and Bowen Liu
$\begin{aligned} & \text { Paper } 661 \\ & \text { 10:46-10:58 } \end{aligned}$	Graph-based short text clustering via contrastive learning with graph embedding Yujie Wei, Weidong Zhou, Jin Zhou, Yingxu Wang, Shiyuan Han, Tao Du, Cheng Yang, and Bowen Liu
$\begin{gathered} \text { Paper 121 } \\ \text { 10:58-11:10 } \end{gathered}$	Adaptive Probabilistic Broadcast in Ad hoc Networks Xiaoying Shuai, Yuxia Yin, and Bin Zhang
$\begin{gathered} \text { Paper } 216 \\ \text { 11:10-11:22 } \end{gathered}$	Aggregation of S-generalized distances Lijun Sun, Chen Zhao, and Gang Li
$\begin{gathered} \text { Paper } 758 \\ \text { 11:22-11:34 } \end{gathered}$	A Survey on Multimodal Named Entity Recognition Shenyi Qian, Wenduo Jin, Yonggang Chen, Jiangtao Ma, Yaqiong Qiao, and Jinyu Lu
$\begin{gathered} \text { Paper 628 } \\ \text { 11:34-11:46 } \end{gathered}$	Automatic Text Extractive Summarization Based on Text Graph Representation and Attention Matrix Yuan-Ching Lin and Jinwen Ma
$\begin{gathered} \text { Paper 678 } \\ \text { 11:46-11:58 } \end{gathered}$	Speaker-Aware Dialogue Discourse Parsing with Meta-Path Based Heterogeneous Graph Neural Network Shaoming Ji and Fang Kong
	Morning, August 12, Saturday, Room D
	Reinforcement Learning
Chair: Qingqing Wang	
$\begin{aligned} & \text { Paper } 472 \\ & \text { 10:10-10:22 } \end{aligned}$	Deep Reinforcement Learning for Solving Multi-objective Vehicle Routing Problem Jian Zhang, Rong Hu, Yi-Jun Wang, Yuan-Yuan Yang, and Bin Qian
$\begin{aligned} & \text { Paper 976 } \\ & \text { 10:22-10:34 } \end{aligned}$	A Reinforcement Learning Method for Solving the Production Scheduling Problem of Silicon Electrodes Yu-Fang Huang, Rong Hu, Xing Wu, Bin Qian, and Yuan-Yuan Yang
$\begin{aligned} & \text { Paper } 657 \\ & \text { 10:34-10:46 } \end{aligned}$	Improved Particle Swarm Optimization Algorithm Combined with Reinforcement Learning for Solving Flexible Job Shop Scheduling Problem Yijie Gao, Qingxia Shang, Yuanyuan Yang, Rong Hu, and Bin Qian
$\begin{aligned} & \text { Paper } 741 \\ & \text { 10:46-10:58 } \end{aligned}$	Deep Reinforcement Learning for Solving Distributed Permutation Flow Shop Scheduling Problem Yijun Wang, Bin Qian, Rong Hu, Yuanyuan Yang, and Wenbo Chen

$\begin{aligned} & \text { Paper } 896 \\ & \text { 10:58-11:10 } \end{aligned}$	Reinforcement-Learning based Preload Strategy for Short Video Zhicheng Ren, Yongxin Shan, Wanchun Jiang, Yijing Shan, Danfeng Shan, and Jianxin Wang
$\begin{aligned} & \text { Paper } 986 \\ & \text { 11:10-11:22 } \end{aligned}$	Advancing Air Combat Tactics with Improved Neural Fictitious Self-Play Reinforcement Learning Shaoqin He, Yang Gao, Baofeng Zhang, Hui Chang, and Xinchen Zhang
$\begin{aligned} & \text { Paper } 319 \\ & \text { 11:22-11:34 } \end{aligned}$	On Context Distribution Shift in Task Representation Learning for Online Meta RL Chenyang Zhao, Zihao Zhou, and Bin Liu
Paper 419 11:34-11:46	A Hyper-Heuristic Algorithm with Q-Learning for Distributed Permutation Flowshop Scheduling Problem Ke Lan, Zi-Qi Zhang, Bi Qian, Rong Hu, and Da-Cheng Zhang
$\begin{gathered} \text { Paper } 560 \\ \text { 11:46-11:58 } \end{gathered}$	Hyper-Heuristic Q-Learning Algorithm for Flow-Shop Scheduling Problem with Fuzzy Processing Times Jinhan Zhu, Rong Hu, Zuocheng Li, Bin Qian, and Ziqi Zhang
$\begin{gathered} \text { Paper } 214 \\ \text { 11:58-12:10 } \end{gathered}$	Robust Anti-forensics on Audio Forensics System Qingqing Wang and Dengpan Ye
	Afternoon, August 12, Saturday, Room A
	Intelligent Data Analysis and Prediction
Chair: Siyu Peng	
$\begin{gathered} \text { Paper } 889 \\ \text { 13:30-13:42 } \end{gathered}$	A Light-weighted Model of GRU+CNN Hybrid for Network Intrusion Detection Dong Yang, Can Zhou, and Songjie Wei
$\begin{aligned} & \text { Paper } 367 \\ & \text { 13:42-13:54 } \end{aligned}$	CWA-LSTM: A Stock Price Prediction Model Based on Causal Weight Adjustment Qihang Zhang,Zhaoguo Liu,Zhuoer Wen,Da Huang, and Weixia Xu
$\begin{gathered} \text { Paper } 369 \\ \text { 13:54-14:06 } \end{gathered}$	StPrformer: A Stock Price Prediction Model Based on Convolutional Attention Mechanism Zhaoguo Liu, Qihang Zhang, Da Huang, and Dan Wu
$\begin{gathered} \text { Paper } 151 \\ \text { 14:06-14:18 } \end{gathered}$	A Hybrid Tourism Recommendation System Based on Multi-Objective Evolutionary algorithm and Re-ranking Ruifen Cao, Zijue Li, Pijing Wei, Ye Tian, and Chunhou Zheng
$\begin{gathered} \text { Paper } 339 \\ 14: 18-14: 30 \end{gathered}$	Time Series Prediction of 5G Network Data Based on Improved EEMDBiLSTM Prediction Model Jianrong Li, Zheng Li, Jie Li, Gongcheng Shi, Chuanlei Zhang, and Hui Ma
$\begin{gathered} \text { Paper } 196 \\ \text { 14:30-14:42 } \end{gathered}$	Intelligence Evaluation of Music Composition Based on Music Knowledge Shuo Wang, Yun Tie, Xiaobing Li, Xiaoqi Wang, and Lin Qi
$\begin{aligned} & \text { Paper } 809 \\ & \text { 14:42-14:54 } \end{aligned}$	Detformer: Detect the Reliable Attention Index for Ultra-long Time Series Forecasting Xiangxu Meng, Wei Li, Zheng Zhao, Zhihan Liu, Guangsheng Feng, and Huiqiang Wang

$\begin{gathered} \text { Paper 966 } \\ \text { 14:54-15:06 } \end{gathered}$	A dynamic graph convolutional network for anti-money laundering Tianpeng Wei, Biyang Zeng, Wenqi Guo, Zhenyu Guo, Shikui Tu, and Lei Xu
$\begin{gathered} \text { Paper 317 } \\ \text { 15:06-15:18 } \end{gathered}$	Design and Application of Mapping Model for Font Recommendation System Based on Contents Emotion Analysis Young Seo Jia and Soon bum Lim
$\begin{gathered} \text { Paper 588 } \\ \text { 15:18-15:30 } \end{gathered}$	Diagnosis of lung cancer subtypes by combining Multi-graph Embedding and Graph Fusion network Siyu Peng, Jiawei Luo, Cong Shen, and Bo Wang
	Afternoon, August 12, Saturday, Room B
	Signal Processing
Chair: Abir	ussain
$\begin{gathered} \text { Paper } 333 \\ \text { 13:30-13:42 } \end{gathered}$	Epileptic Seizure Detection based on feature extraction and CNN-BiGRU network with attention mechanism Jie Xu, Juan Wang, Jin-Xing Liu, Junliang Shang, Lingyun Dai, Kuiting Yan, and Shasha Yuan
$\begin{aligned} & \text { Paper } 904 \\ & \text { 13:42-13:54 } \end{aligned}$	Improving the Accuracy of Deep Learning Modelling Based on the Statistical Calculation of Mathematical Equations Feng Li and Yujun Hu
$\begin{gathered} \text { Paper } 280 \\ \text { 13:54-14:06 } \end{gathered}$	Improved DetNet Algorithm based on GRU for Massive MIMO systems Hanqing Ding , Bingwei Li, and Jin Xu
$\begin{gathered} \text { Paper } 596 \\ \text { 14:06-14:18 } \end{gathered}$	Metal Oxide Classification Based On SVM Kai Xiao, Zhuo Wang, and Wenzheng Bao
$\begin{gathered} \text { Paper 865 } \\ \text { 14:18-14:30 } \end{gathered}$	Collaborative Face Privacy Protection Method Based on Adversarial Examples in Social Networks Zhenxiong Pan, Junmei Sun, Xiumei Li, Xin Zhang, and Huang Bai
$\begin{gathered} \text { Paper } 271 \\ \text { 14:30-14:42 } \end{gathered}$	A Current Prediction Model Based on LSTM and Ensemble Learning for Remote Palpation Fuyang Wei, Jianhui Zhao, and Zhiyong Yuan
$\begin{aligned} & \text { Paper } 668 \\ & \text { 14:42-14:54 } \end{aligned}$	Minimizing peak memory footprint of inference on IoTs devices by efficient recomputation Xiaofeng Sun, Chaonong Xu, and Chao Li
$\begin{gathered} \text { Paper } 288 \\ \text { 14:54-15:06 } \end{gathered}$	DBCS-SMJF: Designing a BLDCM Control System for Small Machine Joints Using FOC Leyi Zhang, Yingjie Long, Yingbiao Hu, and Huinian Li
$\begin{gathered} \text { Paper } 989 \\ \text { 15:06-15:18 } \end{gathered}$	Exploiting Active-IRS by Maximizing Throughput in Wireless Powered Communication Networks Iqra Hameed and Insoo Koo
$\begin{gathered} \text { Paper } 874 \\ \text { 15:18-15:30 } \end{gathered}$	Electrocardiogram Signal Noise Reduction Application Employing Different Adaptive Filtering Algorithms Amine Essa, Abdullah Zaidan, Suhaib Ziad, Mohamed Elmeligy, Sam Ansari, Haya Alaskar, Soliman Mahmoud, Ayad Turky, Wasiq Khan, Dhiya Al-Jumeily OBE, and Abir Hussain

Afternoon, August 12, Saturday, Room C	
	Intelligent Computing in Computational Biology
Chair: Yingjie Long	
$\begin{gathered} \text { Paper } 132 \\ \text { 13:30-13:42 } \end{gathered}$	Molecular Identification Using Deep Learning Method Mingxiang Gao and Bo Li
$\begin{aligned} & \text { Paper } 710 \\ & \text { 13:42-13:54 } \end{aligned}$	SpliceSCANNER: an accurate and interpretable deep learning-based method for splice site prediction Rongxing Wang, Junwei Xu, Xiaodi Huang, Wangjing Qi, and Yanju Zhang
$\begin{gathered} \text { Paper 707 } \\ \text { 13:54-14:06 } \end{gathered}$	DeepMAT: Predicting Metabolic Pathways of Compounds using a Message Passing and Attention-Based Neural Networks Hayat Ali Shah, Juan Liu, Zhihui Yang, and Jing Feng
$\begin{gathered} \text { Paper } 969 \\ \text { 14:06-14:18 } \end{gathered}$	An Improved Variational Autoencoder-Based Clustering Method for PanCancer Diagnosis and Subtyping Binhua Tang and Jiafei Nie
$\begin{gathered} \text { Paper } 992 \\ \text { 14:18-14:30 } \end{gathered}$	A Stacking-based Ensemble Learning Predictor Combined with Particle Swarm Optimizer for Identifying RNA Pseudouridine Sites Xiao Wang, Pengfei Li, Lijun Han, and Rong Wang
$\begin{gathered} \text { Paper } 555 \\ \text { 14:30-14:42 } \end{gathered}$	Prediction of circRNA-binding protein site based on hybrid neural networks and recurrent forests method Zewen Wang, Qingfang Meng, Qiang Zhang, and Jiahao Zhang
$\begin{aligned} & \text { Paper } 499 \\ & \text { 14:42-14:54 } \end{aligned}$	TAPE-Pero: Using deep representation learning model to identify and localize peroxisomal proteins Jianan Sui, Yuehui Chen, Yi Cao, and Yaou Zhao
$\begin{gathered} \text { Paper 863 } \\ \text { 14:54-15:06 } \end{gathered}$	Plant vacuole protein classification with ensemble stacking model Xunguang Ju, Kai Xiao, Luying He, Qi Wang, Zhuo Wang, and Wenzheng Bao
$\begin{gathered} \text { Paper 523 } \\ \text { 15:06-15:18 } \end{gathered}$	Prediction of LncRNA-Protein Interactions based on Multi-Kernel Fusion and Graph Auto-Encoders Dongdong Mao, Cong Shen, Ruilin Wu, Yuyang Han, Yankai Wu, Jinxuan Wang, Jijun Tang, and Zhijun Liao
$\begin{gathered} \text { Paper } 704 \\ \text { 15:18-15:30 } \end{gathered}$	LXLMEPS: Leveraging the XGB-LCE-based Model for Early Prediction of Sepsis Leyi Zhang, Yingjie Long, Yingbiao Hu, and Huinian Li
	Afternoon, August 12, Saturday, Room D
	Medical Image Analysis
Chair: Meng Zhang	
$\begin{gathered} \text { Paper 529 } \\ \text { 13:30-13:42 } \end{gathered}$	DETA-Net: A Dual Encoder Network with Text-Guided Attention Mechanism for Skinlesions Segmentation

	Cong Shen, and Xinyue Wang Jijun Tang, and Zhijun Liao
$\begin{aligned} & \text { Paper } 1017 \\ & \text { 13:42-13:54 } \end{aligned}$	A Blockchain-based Network Alignment System for Power Equipment Data Inconsistency Yuxiang Cai, Xin Jiang, Qifan Yang, Wenhao Zhao, and Chen Lin
$\begin{gathered} \text { Paper } 274 \\ \text { 13:54-14:06 } \end{gathered}$	Hessian Non-Negative Hypergraph Lingling Li, Zihang Li, Mingkai Wang, Taisong Jin, and Jie Liu
$\begin{gathered} \text { Paper } 496 \\ 14: 06-14: 18 \end{gathered}$	Multi-Omics Cancer Subtype Recognition Based on Multi-Kernel Partition Aligned Subspace Clustering Jian Liu, Long Hou, and Shuguang Ge
$\begin{gathered} \text { Paper } 897 \\ \text { 14:18-14:30 } \end{gathered}$	GPU Optimization of Biological Macromolecule Multi-tilt Electron Tomography Reconstruction Algorithm Zi-Ang Fu, Xiaohua Wan, and Fa Zhang
$\begin{gathered} \text { Paper } 811 \\ \text { 14:30-14:42 } \end{gathered}$	Fed-CSA: Channel Spatial Attention and Adaptive Weights Aggregation based-Federated Learning for Breast Tumor Segmentation on MRI Xinyu Dong, Zhenwei Shi, XiaoMei Huang, Chu Han, Zi-han Cao, Zhihe Zhao, Dan Wang, Peng Xu, Zaiyi Liu, and Wenbin Liu
$\begin{aligned} & \text { Paper } 769 \\ & \text { 14:42-14:54 } \end{aligned}$	DBL-MPE: Deep Broad Learning for Prediction of Response to Neo-adjuvant Chemotherapy Using MRI-based Multi-Angle Maximal Enhancement Projection in Breast Cancer Zihan Cao, Zhenwei Shi , XiaoMei Huang, Chu Han Xinyu Dong, Zhihe Zhao, Dan Wang, Peng Xu, Zaiyi Liu, and Wenbin Liu
$\begin{gathered} \text { Paper } 378 \\ \text { 14:54-15:06 } \end{gathered}$	SSTVC: Carotid plaque classification from ultrasound images using self-supervised triple-view contrast learning Cheng Li, Xiaoyue Fang, Ran Zhou, Zhi Yang, and Haitao Gan
$\begin{gathered} \text { Paper 813 } \\ \text { 15:06-15:18 } \end{gathered}$	Identify complex higher-order associations between Alzheimer's disease genes and imaging markers through Improved Adaptive Sparse Multi-View Canonical Correlation Analysis Yi-Ming Wang, Xiang-Zhen Kong, Bo-Xin Guan, Chun-Hou Zheng, and Ying Lian Ga
$\begin{gathered} \text { Paper } 448 \\ \text { 15:18-15:30 } \end{gathered}$	A segmentation method of 3D liver image based on multi-scale feature fusion and coordinate attention mechanism Meng Zhang, Xiaolong Zhang, He Deng, and Hongwei Ren
	Afternoon, August 12, Saturday, Room A
	Knowledge Discovery and Data Mining
Chair: Chee Kiat Seow	
$\begin{gathered} \text { Paper } 935 \\ \text { 15:40-15:52 } \end{gathered}$	Research on double input electric load forecasting model based on feature fusion Zi Wang, Tao Zhang, Sheng Zeng, and Bing Wang
$\begin{aligned} & \text { Paper } 926 \\ & \text { 15:52-16:04 } \end{aligned}$	TAP-AHGNN: An Attention-based Heterogeneous Graph Neural Network for Service Recommendation on Trigger-Action Programming Platform

	Zijun Huang, Jiangfeng Li, Huijuan Zhang, Chenxi Zhang, and Gang Yu
$\begin{gathered} \text { Paper } 262 \\ \text { 16:04-16:16 } \end{gathered}$	RNL: A Robust and Highly-Efficient Model for Time-Aware Web Service QoS Prediction Jiajia Mi and Hao Wu
$\begin{gathered} \text { Paper } 572 \\ \text { 16:16-16:28 } \end{gathered}$	Missing data analysis and soil compressive modulus estimation via Bayesian evolutionary trees Wenchao Zhang, Peixin Shi, Xiaoqi Zhou, and Pengjiao Jia
$\begin{gathered} \text { Paper 695 } \\ \text { 16:28-16:40 } \end{gathered}$	Music Emotion Recognition Using Multi-Head Self-Attention-Based Models Yao Xiao, Haoxin Ruan,Xujian Zhao, Peiquan Jin, and Xuebo Cai
$\begin{gathered} \text { Paper } 312 \\ \text { 16:40-16:52 } \end{gathered}$	Multivariate Time Series Anomaly Detection Method Based on mTranAD Chuanlei Zhang, Yicong Li, Jie Li , Guixi Li, and Hui Ma
$\begin{gathered} \text { Paper } 101 \\ \text { 16:52-17:04 } \end{gathered}$	Change-Point Detection Under Pearson-like Scaled-Bregman Divergence Tong Si, Yunge Wang, Lingling Zhang, Kate Cannell, Haijun Gong
$\begin{gathered} \text { Paper } 999 \\ \text { 17:04-17:16 } \end{gathered}$	A deep transfer fusion model for recognition of Acute Lymphoblastic leukemia with few samples Zhihua Du, Xin Xia, Min Fang, Li Yu, and Jianqiang Li
$\begin{gathered} \text { Paper } 392 \\ \text { 17:16-17:28 } \end{gathered}$	Proximal Symmetric Non-negative Latent Factor Analysis: A Novel Approach to HighlyAccurate Representation of Undirected Weighted Networks Yurong Zhong, Zhe Xie, Weiling Li, and Xin Luo
$\begin{gathered} \text { Paper } 217 \\ \mathbf{1 7 : 2 8 - 1 7 : 4 0} \end{gathered}$	Undetectable Attack to Deep Neural Networks Without Using Model Parameters Chen Yang, Yinyan Zhang, and Ameer Hamza Khan
$\begin{gathered} \text { Paper } 524 \\ \text { 17:40-17:52 } \end{gathered}$	Information Extraction System for Invoices and Receipts QiuXing Michelle Tan, Qi Cao, Chee Kiat Seow, and Peter Chunyu Yau
urday, Room B	
	tural Language Processing and Computational Linguistics
Chair: Qingqing Li	
$\begin{gathered} \text { Paper } 618 \\ \text { 15:40-15:52 } \end{gathered}$	Simple but Effective: Keyword-based Metric Learning for Event Sentence Coreference Identification Tailai Peng, Rui Chen, Zhe Cui, and Zheng Chen
$\begin{gathered} \text { Peper } 823 \\ \text { 15:52-16:04 } \end{gathered}$	A Content Word Augmentation Method for Low-Resource Neural Machine Translation Fuxue Li, Zhongchao Zhao, Chuncheng Chi, Hong Yan, and Zhen Zhang
$\begin{gathered} \text { Paper } 790 \\ \text { 16:04-16:16 } \end{gathered}$	Improving Neural Machine Translation by Retrieving Target Translation Template Fuxue Li, Chuncheng Chi, Hong Yan, and Zhen Zhang

$\begin{gathered} \text { Paper } 535 \\ \text { 16:16-16:28 } \end{gathered}$	Learning from Patterns via Pre-trained Masked Language Model for Semisupervised Automated Essay Scoring Jingbo Sun, Weiming Peng, Tianbao Song and Jihua Song
$\begin{gathered} \text { Paper } 953 \\ \text { 16:28-16:40 } \end{gathered}$	Exploiting Query Knowledge Embedding and Trilinear Joint Embedding for Visual Question Answering Zheng Chen and Yaxin Wen
$\begin{gathered} \text { Paper } 794 \\ \text { 16:40-16:52 } \end{gathered}$	Leveraging Inter-Class Differences and Label Semantics for Few-Shot Text Classification Xinran Xie, Rui Chen, Tailai Peng, Zhe Cui , and Zheng Chen
$\begin{gathered} \text { Paper } 834 \\ \text { 16:52-17:04 } \end{gathered}$	STADEE: STAtistics-based DEEp Detection of Machine Generated Text Zheng Chen and Huming Liu
$\begin{gathered} \text { Paper 715 } \\ \text { 17:04-17:16 } \end{gathered}$	Nucleus Beam Search for Machine Translation Decoding Zheng Chen, Ruiwen Tao, and Yifan Wang
$\begin{gathered} \text { Paper } 318 \\ \text { 17:16-17:28 } \end{gathered}$	UCM: Personalized Document-level Sentiment Analysis Based on User Correlation Mining Jiayue Qiu, Ziyue Yu, and Wuman Luo
$\begin{gathered} \text { Paper 675 } \\ \text { 17:28-17:40 } \end{gathered}$	Transition-based Mention Representation for Neural Coreference Resolution Qingqing Li and Fang Kong
	Afternoon, August 12, Saturday, Room C
	Biomedical Informatics Theory and Methods
Chair: Yue Gao	
$\begin{gathered} \text { Paper } 239 \\ \text { 15:40-15:52 } \end{gathered}$	Extraction of relationship between esophageal cancer and biomolecules based on BioBERT Dayu Tan, Yang Yang, Minglu Wang, Pengpeng Wang, Lejun Zhang, Tseren Onolt Ishdorj, and Yansen Su
$\begin{gathered} \text { Paper 144 } \\ \text { 15:52-16:04 } \end{gathered}$	Prediction of cancer driver genes based on pyramidal dynamic mapping algorithm Pi-Jing Wei, Shu-Li Zhou, Rui-Fen Cao, Yansen Su, and Chun-Hou Zheng
$\begin{gathered} \text { Paper } 143 \\ \text { 16:04-16:16 } \end{gathered}$	Generative adversarial network-based data augmentation method for anti-coronavirus peptides prediction Jiliang Xu, Chungui Xu, Ruifen Cao, Yonghui He, Yannan Bin, and Chun-Hou Zheng
$\begin{gathered} \text { Paper } 837 \\ \text { 16:16-16:28 } \end{gathered}$	Optimizing Cardiac Surgery Risk Prediction: An Machine Learning Approach with Counterfactual Explanations Dengkang Qin, Mengxue Liu, Zheng Chen, and Qian Lei
$\begin{gathered} \text { Paper 632 } \\ \text { 16:28-16:40 } \end{gathered}$	LANCMDA: Predicting MiRNA-Disease Associations via LightGBM with Attributed Network Construction Xu-Ran Dou, Wen-Yu Xi, Tian-Ru Wu, Cui-Na Jiao, Jin-Xing Liu, and Ying Lian Gao

$\begin{gathered} \text { Paper } 379 \\ \text { 16:40-16:52 } \end{gathered}$	Seizure prediction based on multidimensional EEG spatial matrix and residual network structure Jiahao Zhang, Qingfang Meng, and Zewen Wang
$\begin{gathered} \text { Paper } 822 \\ \text { 16:52-17:04 } \end{gathered}$	A Deep Learning Approach Incorporating Data Missing Mechanism in Predicting Acute Kidney Injury in ICU Yuan Zhang, Zhengbo Zhang, Xiaoli Liu, Lei Zha, Fengcong, Xiaorui Su, Bowei Zhao, Lun Hu, and Pengwei Hu
$\begin{gathered} \text { Paper } 302 \\ \text { 17:04-17:16 } \end{gathered}$	Spectral Clustering of Single-Cell RNA-Sequencing Data by Multiple Feature Sets Affinity Yang Liu, Feng Li, Junliang Shang, Daohui Ge, Qianqian Ren, and Shengjun Li
$\begin{gathered} \text { Paper } 828 \\ \text { 17:16-17:28 } \end{gathered}$	MOVNG*: Applied a Novel Sparse Fusion Representation into GTCN for Pan-cancer Classification and Biomarker Identification Xin Chen, Yun Tie, Fenghui Liu, Dalong Zhang, and Lin Qi
$\begin{gathered} \text { Paper } 997 \\ \text { 17:28-17:40 } \end{gathered}$	Spatial Domain Identification based on Graph Attention Denoising Autoencoder Yue Gao, Dai-Jun Zhang, Cui-Na Jiao, Ying-Lian Gao, and Jin-Xing Liu
	Afternoon, August 12, Saturday, Room D
	Intelligent Computing in Drug Design
Chair: Yijia	
$\begin{gathered} \text { Paper } 722 \\ \text { 15:40-15:52 } \end{gathered}$	Deep Learning-based Prediction of Drug-Target Binding Affinities by Incorporating Local Structure of Protein Runhua Zhang, Baozhong Zhu, Tengsheng Jiang, Zhiming Cui, and Hongjie Wu
$\begin{gathered} \text { Paper } 750 \\ \text { 15:52-16:04 } \end{gathered}$	NIEE: Modeling Edge Embeddings for Drug-Disease Association Prediction via Neighborhood Interactions Yu Jiang, Jingli Zhou, Yong Zhang, Yulin Wu, Xuan Wang, and Junyi Li
$\begin{gathered} \text { Paper } 888 \\ \text { 16:04-16:16 } \end{gathered}$	A Novel Descriptor and Molecular Graph-Based Bimodal Contrastive Learning Framework for Drug Molecular Property Prediction Zhengda He, Linjie Chen, Hao Lv, Rui-ning Zhou, Jiaying Xu, Yadong Chen, Jianhua HU, and Yang Gao
$\begin{gathered} \text { Paper } 275 \\ \text { 16:16-16:28 } \end{gathered}$	An Efficient Drug Design Method Based on Drug-Target Affinity Haoran Liu, Xiaolong Zhang, Xiaoli Lin, and Jing Hu
$\begin{gathered} \text { Paper } 815 \\ \text { 16:28-16:40 } \end{gathered}$	A novel graph representation learning model for drug repositioning using graph transition probability matrix over heterogenous information networks Dong-Xu Li, Xun Deng, Bo-Wei Zhao, Xiao-Rui Su, Guo-Dong Li, Zhu-Hong You, Peng-Wei $H u$, and Lun $H u$
$\begin{gathered} \text { Paper } 515 \\ \text { 16:40-16:52 } \end{gathered}$	Multi-level Subgraph Representation Learning for Drug-Disease Association Prediction over Heterogeneous Biological Information Network Bo-Wei Zhao, Xiao-Rui Su, Yue Yang, Dong-Xu Li, Peng-Wei Hu, Zhu-Hong You, and Lun Hu
$\begin{gathered} \text { Paper } 921 \\ \text { 16:52-17:04 } \end{gathered}$	EEG Convolutional Sparse Transformer for Epilepsy Detection and Related Drug Classification

	Zhengda He, Linjie Chen, Hao Lv, Rui-ning Zhou, Jiaying Xu, Yadong Chen, Jianhua HU, and Yang Gao
Paper 727 17:04-17:16	Drug-target interaction prediction based on interpretable graph transformer model Baozhong Zhu, Runhua Zhang, Tengsheng Jiang, Zhiming Cui, and Hongjie Wu
Paper 743	A Transformer-based Deep Learning Approach with Multi-Layer Feature Processing for Accurate Prediction of Protein-DNA Binding Residues Haipeng Zhao, Baozhong Zhu, Tengsheng Jiang, Zhiming Cui, and Hongjie Wu
17:16-17:28	
Paper 232	DTI-MACF: Drug-Target Interaction Prediction via Multi-component Attention Network Jiejin Deng, Yijia Zhang, Jing Zhang, Yaohua Pan, and Mingyu Lu

The Nineteenth International Conference on Intelligent Computing Zhengzhou, China, August, 10-13, 2023

Website: http://www.ic-icc.cn/2023/
Email: icic@ic-icc.cn

